organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzyl *N'*-(1-methyl-1*H*-indol-3-yl-methylidene)hydrazinecarbodithioate

Hamid Khaledi, Hapipah Mohd Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 22 November 2008; accepted 22 November 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.087; data-to-parameter ratio = 15.4.

The N'-(1-methyl-1*H*-indol-3-ylmethylidene)hydrazinecarbodithioate portion of the title molecule, $C_{18}H_{17}N_3S_2$, is nearly planar; this unit and the phenyl ring subtend an angle of 112.9 (2)° at the methylene C atom.

Related literature

For the structure of *S*-benzyl *N*-1-(1*H*-indol-3-ylmethyl-idenehydrazinecarbodithioate, see: Khaledi *et al.* (2008).

Experimental

Crystal data C₁₈H₁₇N₃S₂

 $M_r = 339.47$

```
Monoclinic, P2_1

a = 10.6111 (4) Å

b = 6.1134 (2) Å

c = 13.4961 (4) Å

\beta = 111.934 (2)°

V = 812.12 (5) Å<sup>3</sup>
```

Data collection

Bruker SMART APEX	5513 measured reflections
diffractometer	3277 independent reflections
Absorption correction: multi-scan	2802 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.027$
$T_{\min} = 0.908, \ T_{\max} = 0.993$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037\\ wR(F^2) &= 0.087\\ S &= 1.03\\ 3277 \text{ reflections}\\ 213 \text{ parameters}\\ 2 \text{ restraints} \end{split}$$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1261 Friedel pairs Flack parameter: 0.01 (8)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

Z = 2

Mo $K\alpha$ radiation

 $0.30 \times 0.10 \times 0.02 \text{ mm}$

 $\mu = 0.33 \text{ mm}^{-1}$

T = 100 (2) K

We thank the University of Malaya for funding this study (Science Fund Grants 12–02-03–2031 & 12–02-03–2051).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2334).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2107.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2008). E64, o2482 [doi:10.1107/S1600536808039330]

Benzyl N'-(1-methyl-1H-indol-3-ylmethylidene)hydrazinecarbodithioate

H. Khaledi, H. Mohd Ali and S. W. Ng

Comment

(type here to add)

Experimental

N-Methylindole-3-carbaldehyde (1.59 g, 10 mmol) and *S*-benzyl dithiocarbazate (1.98 g, 10 mmol) were heated in ethanol (60 ml) for 1 h. Several drops of acetic acid were added. The solution yielded a solid on cooling. This was recrystallized from DMSO.

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.99 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2 times $U_{eq}(C)$, 1.5 for methyl-C. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; it does not form a hydrogen bond.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{18}H_{17}N_2S_3$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Benzyl N'-(1-methyl-1H-indol-3-ylmethylidene)hydrazinecarbodithioate

Crystal data	
$C_{18}H_{17}N_3S_2$	$F_{000} = 356$
$M_r = 339.47$	$D_{\rm x} = 1.388 { m Mg m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1721 reflections
a = 10.6111 (4) Å	$\theta = 3.1 - 27.1^{\circ}$
b = 6.1134 (2) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 13.4961 (4) Å	T = 100 (2) K
$\beta = 111.934 \ (2)^{\circ}$	Plate, yellow
V = 812.12 (5) Å ³	$0.30\times0.10\times0.02~mm$

Z = 2

Data collection

Bruker SMART APEX diffractometer	3277 independent reflections
Radiation source: fine-focus sealed tube	2802 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 100(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.908, \ T_{\max} = 0.993$	$k = -6 \rightarrow 7$
5513 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: constr
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0366P)^2 + 0.212P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.087$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
3277 reflections	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
213 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983), 1261 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.01 (8)

Secondary atom site location: difference Fourier map

ractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)	

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.33191 (7)	0.50000 (12)	0.67816 (5)	0.01960 (16)
S2	0.48123 (7)	0.86601 (13)	0.61270 (5)	0.02642 (18)
N1	0.2902 (2)	0.7662 (4)	1.16590 (16)	0.0202 (5)
N2	0.3791 (2)	0.7502 (4)	0.85695 (16)	0.0181 (5)
N3	0.4323 (2)	0.8477 (4)	0.78860 (16)	0.0183 (5)
H3	0.480 (3)	0.967 (3)	0.796 (2)	0.035 (9)*
C1	0.2337 (3)	0.5789 (5)	1.1079 (2)	0.0178 (6)
C2	0.1584 (3)	0.4147 (5)	1.1303 (2)	0.0215 (6)
H2	0.1422	0.4143	1.1950	0.026*
C3	0.1075 (3)	0.2515 (5)	1.0548 (2)	0.0236 (6)
H3A	0.0531	0.1389	1.0668	0.028*
C4	0.1347 (3)	0.2496 (5)	0.9610 (2)	0.0215 (6)
H4	0.0983	0.1354	0.9106	0.026*
C5	0.2133 (3)	0.4101 (4)	0.9399 (2)	0.0193 (6)

Н5	0.2326	0.4051	0.8767	0.023*
C6	0.2637 (3)	0.5795 (4)	1.01374 (19)	0.0166 (6)
C7	0.2743 (3)	0.8324 (5)	1.2645 (2)	0.0261 (7)
H7A	0.3162	0.9761	1.2867	0.039*
H7B	0.3186	0.7249	1.3206	0.039*
H7C	0.1774	0.8405	1.2524	0.039*
C8	0.3524 (3)	0.8815 (5)	1.11224 (19)	0.0201 (6)
H8	0.3981	1.0166	1.1357	0.024*
С9	0.3409 (3)	0.7767 (4)	1.01840 (19)	0.0168 (6)
C10	0.3932 (2)	0.8586 (5)	0.94249 (18)	0.0166 (5)
H10	0.4392	0.9952	0.9551	0.020*
C11	0.4177 (3)	0.7519 (5)	0.6953 (2)	0.0197 (6)
C12	0.3161 (3)	0.4207 (5)	0.54473 (19)	0.0229 (6)
H12A	0.3840	0.5019	0.5251	0.028*
H12B	0.3366	0.2627	0.5445	0.028*
C13	0.1765 (3)	0.4642 (5)	0.46213 (19)	0.0192 (6)
C14	0.1145 (3)	0.6657 (5)	0.4536 (2)	0.0220 (6)
H14	0.1606	0.7800	0.5010	0.026*
C15	-0.0137 (3)	0.7043 (5)	0.3773 (2)	0.0258 (7)
H15	-0.0550	0.8438	0.3726	0.031*
C16	-0.0816 (3)	0.5379 (6)	0.3078 (2)	0.0295 (8)
H16	-0.1693	0.5638	0.2552	0.035*
C17	-0.0220 (3)	0.3353 (5)	0.3150 (2)	0.0280 (7)
H17	-0.0686	0.2212	0.2677	0.034*
C18	0.1073 (3)	0.2984 (5)	0.3919 (2)	0.0240 (7)
H18	0.1486	0.1589	0.3966	0.029*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0229 (3)	0.0209 (4)	0.0149 (3)	-0.0023 (3)	0.0070 (2)	0.0006 (3)
S2	0.0317 (4)	0.0286 (4)	0.0252 (3)	-0.0013 (4)	0.0179 (3)	0.0058 (3)
N1	0.0225 (12)	0.0243 (13)	0.0158 (10)	0.0007 (10)	0.0094 (9)	-0.0026 (9)
N2	0.0191 (11)	0.0187 (13)	0.0176 (10)	-0.0022 (10)	0.0082 (9)	0.0036 (9)
N3	0.0232 (12)	0.0166 (13)	0.0178 (10)	-0.0018 (10)	0.0109 (9)	0.0023 (10)
C1	0.0179 (14)	0.0190 (15)	0.0159 (12)	0.0050 (12)	0.0056 (11)	0.0017 (11)
C2	0.0210 (14)	0.0248 (17)	0.0208 (13)	0.0049 (12)	0.0103 (11)	0.0051 (11)
C3	0.0217 (14)	0.0195 (16)	0.0298 (14)	-0.0007 (13)	0.0097 (12)	0.0052 (12)
C4	0.0225 (14)	0.0195 (15)	0.0208 (13)	-0.0007 (12)	0.0062 (11)	-0.0012 (12)
C5	0.0192 (13)	0.0213 (16)	0.0178 (12)	0.0031 (12)	0.0072 (11)	0.0025 (11)
C6	0.0145 (13)	0.0187 (15)	0.0169 (12)	0.0041 (11)	0.0063 (10)	0.0031 (11)
C7	0.0369 (17)	0.0297 (18)	0.0160 (12)	0.0016 (14)	0.0148 (12)	-0.0056 (12)
C8	0.0173 (13)	0.0194 (15)	0.0216 (12)	0.0007 (13)	0.0049 (10)	-0.0003 (12)
C9	0.0156 (13)	0.0182 (15)	0.0157 (12)	0.0003 (11)	0.0048 (10)	0.0016 (11)
C10	0.0180 (13)	0.0136 (13)	0.0168 (11)	-0.0014 (12)	0.0049 (10)	-0.0002 (11)
C11	0.0176 (13)	0.0225 (16)	0.0185 (12)	0.0038 (12)	0.0061 (11)	0.0040 (11)
C12	0.0298 (15)	0.0225 (16)	0.0182 (12)	0.0035 (12)	0.0109 (12)	-0.0016 (11)
C13	0.0230 (13)	0.0242 (17)	0.0130 (11)	-0.0008 (12)	0.0099 (10)	0.0005 (11)

supplementary materials

C14	0.0220 (15)	0.0266 (17)	0.0157(12)	0.0016(12)	0.0064 (11)	0.0021 (11)
C14	0.0230(13)	0.0200(17)	0.0137(12)	-0.0010(12)	0.0004(11)	-0.0021(11)
C15	0.0281(10)	0.0230(17)	0.0234(14)	0.0043(13)	0.0122(12)	0.0000(13)
C10 C17	0.0244(13)	0.044(2) 0.0224(10)	0.0170(12)	-0.0029(14)	0.0033(11)	0.0004(13)
C17	0.0333(17)	0.0324(19)	0.0109(12)	-0.0137(13)	0.0103(12)	-0.0049(13)
C18	0.0300 (17)	0.0196 (16)	0.0202 (13)	-0.0043 (13)	0.0159 (13)	-0.0011 (11)
Constraint	······································					
Geometric paran	nelers (A, ⁻)					
S1-C11		1.759 (3)	С7—	-H7A	0.9	800
S1—C12		1.811 (3)	С7—	-H7B	0.9	800
S2—C11		1.657 (3)	С7—	-H7C	0.9	800
N1—C8		1.347 (3)	C8—	-C9	1.3	83 (4)
N1-C1		1.390 (4)	C8—	-H8	0.9	500
N1—C7		1.460 (3)	С9—	-C10	1.4	26 (4)
N2—C10		1.290 (3)	C10-	-H10	0.9	500
N2—N3		1.384 (3)	C12-	C13	1.5	08 (4)
N3—C11		1.345 (3)	C12-	-H12A	0.9	900
N3—H3		0.875 (10)	C12-	-H12B	0.9	900
C1—C2		1.386 (4)	C13-	C14	1.3	81 (4)
C1—C6		1.420 (4)	C13-	C18	1.3	94 (4)
C2—C3		1.384 (4)	C14-	C15	1.3	86 (4)
C2—H2		0.9500	C14-	-H14	0.9	500
C3—C4		1.400 (4)	C15-	C16	1.3	89 (4)
С3—НЗА		0.9500	C15-	-H15	0.9	500
C4—C5		1.385 (4)	C16-	C17	1.3	78 (5)
C4—H4		0.9500	C16-	-H16	0.9	500
C5—C6		1.398 (4)	C17-	C18	1.3	95 (4)
С5—Н5		0.9500	C17-	-H17	0.9	500
С6—С9		1.445 (4)	C18-	-H18	0.9	500
C11—S1—C12		102.48 (13)	С9—	-C8—H8	124	.6
C8—N1—C1		108.8 (2)	C8—	-C9C10	124	4.8 (3)
C8—N1—C7		126.3 (3)	C8—	-C9C6	106	5.3 (2)
C1—N1—C7		124.7 (2)	C10-	C9C6	128	3.9 (2)
C10—N2—N3		115.8 (2)	N2—	-C10—C9	121	.1 (3)
C11—N3—N2		120.3 (2)	N2—	-C10—H10	119	9.5
C11—N3—H3		109 (2)	С9—	-C10—H10	119	0.5
N2—N3—H3		131 (2)	N3—	-C11—S2	120	0.9 (2)
C2-C1-N1		129.5 (2)	N3—	-C11—S1	112	2.2 (2)
C2—C1—C6		122.6 (3)	S2—	C11—S1	126	5.94 (17)
N1—C1—C6		108.0 (2)	C13-	C12S1	112	2.87 (19)
C3—C2—C1		117.4 (2)	C13-	C12H12A	109	0.0
С3—С2—Н2		121.3	S1—	C12—H12A	109	0.0
C1—C2—H2		121.3	C13-	C12H12B	109	0.0
C2—C3—C4		121.1 (3)	S1—	C12—H12B	109	0.0
С2—С3—НЗА		119.4	H12A	A—C12—H12B	107	7.8
С4—С3—НЗА		119.4	C14-	C13C18	118	3.6 (2)
C5—C4—C3		121.6 (3)	C14-	C13C12	121	.6 (2)
С5—С4—Н4		119.2	C18-	C13C12	119	9.8 (3)
C3—C4—H4		119.2	C13-		121	

C4—C5—C6	118.6 (2)	C13—C14—H14	119.4
С4—С5—Н5	120.7	C15—C14—H14	119.4
С6—С5—Н5	120.7	C14—C15—C16	119.7 (3)
C5—C6—C1	118.8 (2)	C14—C15—H15	120.2
С5—С6—С9	135.2 (2)	C16—C15—H15	120.2
C1—C6—C9	106.0 (2)	C17—C16—C15	120.2 (3)
N1—C7—H7A	109.5	C17—C16—H16	119.9
N1—C7—H7B	109.5	C15—C16—H16	119.9
H7A—C7—H7B	109.5	C16—C17—C18	119.7 (3)
N1—C7—H7C	109.5	C16—C17—H17	120.2
Н7А—С7—Н7С	109.5	C18—C17—H17	120.2
H7B—C7—H7C	109.5	C13—C18—C17	120.7 (3)
N1—C8—C9	110.9 (3)	C13—C18—H18	119.7
N1—C8—H8	124.6	C17—C18—H18	119.7
C10—N2—N3—C11	-177.2 (2)	C1—C6—C9—C8	-0.2 (3)
C8—N1—C1—C2	-178.6 (3)	C5—C6—C9—C10	-1.0 (5)
C7—N1—C1—C2	-3.0 (4)	C1—C6—C9—C10	-178.3 (3)
C8—N1—C1—C6	0.3 (3)	N3—N2—C10—C9	179.1 (2)
C7—N1—C1—C6	175.9 (2)	C8—C9—C10—N2	179.5 (3)
N1—C1—C2—C3	176.3 (3)	C6—C9—C10—N2	-2.7 (4)
C6—C1—C2—C3	-2.4 (4)	N2—N3—C11—S2	-179.82 (19)
C1—C2—C3—C4	1.8 (4)	N2—N3—C11—S1	-1.8 (3)
C2—C3—C4—C5	0.0 (4)	C12—S1—C11—N3	175.97 (19)
C3—C4—C5—C6	-1.3 (4)	C12—S1—C11—S2	-6.1 (2)
C4—C5—C6—C1	0.8 (4)	C11—S1—C12—C13	-101.3 (2)
C4—C5—C6—C9	-176.2 (3)	S1-C12-C13-C14	50.8 (3)
C2—C1—C6—C5	1.1 (4)	S1-C12-C13-C18	-129.3 (2)
N1-C1-C6-C5	-177.9 (2)	C18—C13—C14—C15	0.0 (4)
C2—C1—C6—C9	178.9 (2)	C12—C13—C14—C15	179.9 (2)
N1-C1-C6-C9	-0.1 (3)	C13—C14—C15—C16	-0.1 (4)
C1—N1—C8—C9	-0.4 (3)	C14—C15—C16—C17	0.3 (4)
C7—N1—C8—C9	-175.9 (3)	C15-C16-C17-C18	-0.4 (4)
N1-C8-C9-C10	178.6 (2)	C14—C13—C18—C17	-0.2 (4)
N1-C8-C9-C6	0.4 (3)	C12-C13-C18-C17	180.0 (2)
C5—C6—C9—C8	177.1 (3)	C16—C17—C18—C13	0.4 (4)

Fig. 1

